Tropical forest conservation and management can significantly benefit from information about the spatial distribution of tree species. Very-high resolution (VHR) spaceborne platforms have been hailed as a promising technology for mapping tree species over broad spatial extents. WorldView-3, the most advanced VHR sensor, provides spectral data in 16 bands covering the visible to near-infrared (VNIR, 400–1040 nm) and shortwaveinfrared (SWIR, 1210–2365 nm) wavelength ranges. It also collects images at unprecedented levels of details using a panchromatic band with 0.3-m of spatial resolution. However, the potential of WorldView-3 at its full spectral and spatial resolution for tropical tree species classification remains unknown. In this study, we performed a comprehensive assessment of WorldView-3 images acquired in the dry and wet seasons for tree species discrimination in tropical semi-deciduous forests. Classification experiments were performed using VNIR individually and combined with SWIR channels. To take advantage of the sub-metric resolution of the panchromatic band for classification, we applied an individual tree crown (ITC)-based approach that employed pansharpened VNIR bands and gray level co-occurrence matrix texture features. We determined whether the combination of images from the two annual seasons improves the classification accuracy.
Read the full research
Comments